Using Advanced Decision Analysis to Mitigate Project Risk for Large-Scale Wood Pellet Export Projects

Presented by Dr. William Strauss
President, FutureMetrics
Cofounder and Director, Maine Energy Systems
April 9, 2013
Who is FutureMetrics?

We are Globally Respected Consultants in the BioEnergy Space

8 Airport Road
Bethel, ME 04217, USA
www.FutureMetrics.com
FutureMetrics Services:

Research, analysis, and strategic guidance for the bioenergy sector.

Data driven analysis and a depth of knowledge across the bioenergy sector providing full spectrum reporting that enables our clients to make optimal decisions.

Selection of Clients
FutureMetrics LLC
Pellet Project:
Prefeasibility and feasibility studies
Due diligence
Financial modeling
Risk analysis
Economic impact analysis
Expert advice
Dr. William Strauss
Recipient of the 2012 International Excellence in Bioenergy Award
US Energy Policy?
North American Wood Pellet Export Forecast – thousand tonnes
EU-27 WOOD PELLET DEMAND FORECAST, 2008–20 (MILLION TONNES)

Note: Medium-term forecast based on current project pipeline. Long-term forecast based on policy developments and coal market penetration.

Source: Bloomberg New Energy Finance
EU–27 AVERAGE MONTHLY WOOD PELLET IMPORTS FROM NON-EU COUNTRIES, Q2 2009 – Q2 2012 (TONNES)

Note: Figures are a four-month moving average of trade flows. Data represents the nine largest importers. Since January 2012 wood pellets are captured in a dedicated category (CN 4401-3100), before 2012 in code CN 4401-3020.

Source: Bloomberg
New Energy Finance, Eurostat
UK LARGE DEDICATED BIOMASS PLANTS, NOVEMBER 2012 (MW)

Note: The analysis only includes new build dedicated biomass plants with installed capacities of greater than 70MW; it does not include co-firing or coal conversions plants.

Source: Bloomberg New Energy Finance
UK EXPECTED FEEDSTOCK DEMAND, 2008–16 (MILLION DRY TONNES PER YEAR)

BASE CASE

MAXIMUM CASE

Note: in this analysis we assume wood pellets are mostly made from sawdust; the sudden increase in wood pellet demand in 2012 is due to the coal-to-biomass conversion of Tilbury (750MW), and the expected conversion of Ironbridge (375MW); our demand forecast is based on nameplate capacity. Other includes vegetable oils, energy crops and energy trees.

Source: Bloomberg

New Energy Finance
Total Renewable Energy Production in Europe in 1000's of tons of oil equivalent (TOE)

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar energy</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.7%</td>
<td>0.8%</td>
<td>0.9%</td>
<td>1.2%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Biomass</td>
<td>60.7%</td>
<td>60.5%</td>
<td>60.1%</td>
<td>59.2%</td>
<td>62.3%</td>
<td>64.1%</td>
<td>63.8%</td>
<td>65.4%</td>
<td>66.0%</td>
<td>66.8%</td>
<td>66.6%</td>
<td>66.8%</td>
</tr>
<tr>
<td>Geothermal Energy</td>
<td>4.5%</td>
<td>4.7%</td>
<td>4.8%</td>
<td>4.5%</td>
<td>4.8%</td>
<td>5.0%</td>
<td>4.8%</td>
<td>4.6%</td>
<td>4.5%</td>
<td>4.3%</td>
<td>4.0%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Hydro power</td>
<td>31.3%</td>
<td>30.9%</td>
<td>30.8%</td>
<td>31.5%</td>
<td>27.2%</td>
<td>24.8%</td>
<td>24.5%</td>
<td>22.4%</td>
<td>21.4%</td>
<td>19.8%</td>
<td>19.6%</td>
<td>18.7%</td>
</tr>
<tr>
<td>Wind power</td>
<td>1.0%</td>
<td>1.3%</td>
<td>1.9%</td>
<td>2.3%</td>
<td>3.1%</td>
<td>3.6%</td>
<td>4.5%</td>
<td>5.2%</td>
<td>5.7%</td>
<td>6.7%</td>
<td>7.2%</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Year 2009

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar energy</td>
<td>1.6%</td>
</tr>
<tr>
<td>Biomass</td>
<td>66.8%</td>
</tr>
<tr>
<td>Geothermal Energy</td>
<td>3.9%</td>
</tr>
<tr>
<td>Hydro power</td>
<td>18.7%</td>
</tr>
<tr>
<td>Wind power</td>
<td>7.6%</td>
</tr>
</tbody>
</table>
FutureMetrics is the lead consultant on three large pellet export projects
Let’s look at a Hypothetical 250,000 ton per year export project

There are many areas of uncertainty.

We will look at:

• Wood price (which also includes diesel fuel price)
• Pellet selling price (which also includes price appreciation above inflation)
• Capital Cost
• Inflation
• And a few other items...
In this presentation we will not look at (except the “Tilbury effect” and at bit on optimal insurance):

- policy risk
- currency risk
- shipping cost risk
- coal price risk
- market disruption risk (the “Tilbury effect”)

Torrefied pellet production;
- mass and energy balance sensitivities and cost of goods risk
- reliability and maintenance cost risk
- market demand risk (all of the above for export plus competition from white pellets)

Working capital issues;
- supply chain risk (catastrophic failure!)
- product lost risk (optimal insurance coverage)
UK MARGINAL COST OF COAL-FIRING AND CO-FIRING, 2009–2017E (GBP PER MWHE)

Note: The marginal cost of coal-firing is essentially the cost of coal and carbon. We have assumed a 35% conversion efficiency factor. Currently, co-firing is eligible to 0.5 ROC support regardless of fuel mix. In April 2013, the UK will establish a minimum carbon price floor, shown here as an increment over our EU ETS carbon forecast. Costs exclude capex and OPEX costs.
What is THE number?

Wrong Question
The Power of Probabilities: Adding Insight to Enable Better Decisions

The content about “The Number” and the benefits of probabilistic analysis in the next 12 slides are excerpted from a presentation by Randy Heffernan, Palisade Corporation.
Risk Analysis: What Most People Think Of

» Lots of companies always performed risk analysis using 3-point estimates
» They used numbers: best case, worst case, most likely
» It was quantitative, it used spreadsheets, and it gave “a” number
No Longer Good Enough

» Well, it never was

» 3 point estimates only give:
 • 3 possible outcomes of thousands
 • No probability to assess importance

» Point estimates provide no actionable direction

» So what if worst case is X? In a world of limited resources, you need more information to decide what to do about it
Why is Probabilistic Analysis Important?

» Because the world is uncertain

» Uncertainty can be defined as “A parameter, the measurement of which we do not know, and cannot know until some time in the future.”*

* source: Leach: Why Can’t You Just Give Me The Number, p. 8
What if you don’t think in ranges?
What if you ignore probability?
What if you analyze risk another way?

Many companies use:

- 3-point estimates
- Scoring methods
- What-ifs
- Just plain “gut feel”
They All Lead to “The Number”

» All these methods lead to “The Number”
» Most likely case in 3-point estimate = “The Number”
» Scoring methods produce a final single “score” = “The Number” that determines course of action
They All Lead to “The Number”

» Running lots of subjective What-ifs forces managers to pick “most likely” point assumptions to get “The Number”

» Gut feel simply guesses “The Number” (and is at least faster than the other methods)
“The Number” is Evil

» But you don’t want “The Number”

» If anyone tells you they have “The Number,” run away

» If any report bottom-lines “The Number,” send it back
The Number as (Dangerous) Gospel

» “The Number,” once written, becomes set in stone
» “The Number” is disseminated
» “The Number’s” underlying assumptions – and errors - are forgotten
» “The Number” become the basis for big decisions
With Probabilistic Analysis, you can answer:

• “What is the probability of meeting our target?”
• “What are the chances of losing money?”
• “Where’s the graph?”

These are questions you *must* ask
Probabilistic Analysis: The Antidote to “The Number”

» Not possible with spreadsheets alone

» Monte Carlo simulation turns static spreadsheets into probabilistic ranges
Probabilistic Analysis vs. Other Methods

» You avoid perils of all other methods:
 • You avoid getting lost in numbers
 • You capture correlations between related variables
 • Everyone can understand the results: common language
 • Results are based on data, not arbitrary perceptions
Benefits of Probabilistic Analysis

» Improve the odds of success
 • Identify pitfalls to avoid you might have missed – fewer surprises
 • Uncover opportunities to chase you might have missed
 • Research supports effectiveness
Benefits of Probabilistic Analysis

» Identify drivers of risk
 • Sensitivity analysis ranks variables according to impact on your output
 • Understand which factors are most important
 • Target specific variables that have the biggest impact
 • Don’t waste resources on low-impact events, or allocate too much to low-probability events
Benefits of Probabilistic Analysis

» Improve your credibility
 • Make your case more persuasively to those above (and below) you
 • Gain "buy in" from others in the company whose cooperation you need to make the project work

• Get funding: from corporate, from banks, from investors
Monte Carlo simulation is a computerized mathematical technique that allows people to account for risk in quantitative analysis and decision making.

The technique is used by professionals in a variety of fields such as finance, project management, energy, manufacturing, engineering, insurance, oil & gas, transportation, and the environment. (And now in Wood Pellet Project Analysis)

In Monte Carlo simulation, uncertain inputs in a model are represented using ranges of possible values known as probability distributions.

By using probability distributions, variables can have different probabilities of different outcomes occurring.

Probability distributions are a much more realistic way of describing uncertainty in variables of a risk analysis.

Monte Carlo simulation provides the decision-maker with a range of possible outcomes and the probabilities they will occur.
Wood Prices are about 55% to 65% of the Cost of Production of Pellets

Green Wood Prices per Short Ton

source: Innovative Natural Resource Solutions, 2012
Wood Prices

Multiple Regression for BiomassPrice

<table>
<thead>
<tr>
<th>Summary</th>
<th>Multiple R</th>
<th>R-Square</th>
<th>Adjusted R-Square</th>
<th>StErr of Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9643</td>
<td>0.9300</td>
<td>0.9273</td>
<td>1.548191307</td>
</tr>
</tbody>
</table>

ANOVA Table

<table>
<thead>
<tr>
<th>Explained</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>Mean of Squares</th>
<th>F-Ratio</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4200.762555</td>
<td>840.152511</td>
<td>350.5168</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unexplained</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>Mean of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>132</td>
<td>316.3903145</td>
<td>2.396896322</td>
</tr>
</tbody>
</table>

Regression Table

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-Value</th>
<th>p-Value</th>
<th>Confidence Interval 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Constant</td>
<td>-27.37722908</td>
<td>4.710130762</td>
<td>-5.8124</td>
<td>< 0.0001</td>
<td>-36.69433328 to -18.06012487</td>
</tr>
<tr>
<td>NEDiesel</td>
<td>2.507788569</td>
<td>0.345409663</td>
<td>7.2603</td>
<td>< 0.0001</td>
<td>1.824534114 to 3.191043023</td>
</tr>
<tr>
<td>NEDiesel</td>
<td>-0.005467499</td>
<td>0.000471013</td>
<td>-11.6080</td>
<td>< 0.0001</td>
<td>-0.006399209 to -0.004535789</td>
</tr>
<tr>
<td>NEDiesel</td>
<td>0.212217848</td>
<td>0.073118831</td>
<td>2.9024</td>
<td>0.0043</td>
<td>0.067581573 to 0.356854123</td>
</tr>
<tr>
<td>NEDiesel</td>
<td>0.353280366</td>
<td>0.029156256</td>
<td>12.1168</td>
<td>< 0.0001</td>
<td>0.295606392 to 0.41095434</td>
</tr>
<tr>
<td>NEDiesel</td>
<td>-0.015230028</td>
<td>0.001316519</td>
<td>-11.5684</td>
<td>< 0.0001</td>
<td>-0.017834234 to -0.012625823</td>
</tr>
</tbody>
</table>

Scatterplot of Fit vs BiomassPrice

![Scatterplot of Fit vs BiomassPrice](image-url)
MA(1)
Transformations: Difference (1)
Sync Data: 'Wood Prices'!E3:E140
Another Key Variable for the Cash Flow Model is the Price of the Pellets
US domestic price (industrial wood pellets) $/t

<table>
<thead>
<tr>
<th>Location</th>
<th>Delivery period</th>
<th>Bid</th>
<th>Ask</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland, Maine</td>
<td>spot</td>
<td>150.00</td>
<td>157.00</td>
<td>-1.50</td>
</tr>
<tr>
<td>Camden, New Jersey</td>
<td>spot</td>
<td>142.00</td>
<td>147.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>Wilmington, North Carolina</td>
<td>spot</td>
<td>133.00</td>
<td>138.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>Port Everglades, Florida</td>
<td>spot</td>
<td>132.00</td>
<td>138.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>Mobile, Alabama</td>
<td>spot</td>
<td>125.00</td>
<td>132.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>Chicago, Illinois</td>
<td>spot</td>
<td>114.00</td>
<td>124.00</td>
<td>0.0</td>
</tr>
<tr>
<td>Seattle-Tacoma, Washington</td>
<td>spot</td>
<td>125.00</td>
<td>132.00</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

FOB Spot Prices October 15, 2012 (from Argus Biomass Markets)

Petroleum and Pellet Prices (per Barrel or Tonne) if Petroleum and Diesel Fuel Increase at 8.50% per year, yielding a pellet price increase of 7.32% per year. Assumed 2.50% underlying inflation included.

<table>
<thead>
<tr>
<th>Year</th>
<th>Petroleum ($/Barrel)</th>
<th>Wood Pellets FOB XXX ($/Tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>100.00</td>
<td>150.00</td>
</tr>
<tr>
<td>2015</td>
<td>109.00</td>
<td>165.75</td>
</tr>
<tr>
<td>2016</td>
<td>118.90</td>
<td>181.54</td>
</tr>
<tr>
<td>2017</td>
<td>128.79</td>
<td>197.34</td>
</tr>
<tr>
<td>2018</td>
<td>138.69</td>
<td>213.14</td>
</tr>
<tr>
<td>2019</td>
<td>148.59</td>
<td>228.95</td>
</tr>
<tr>
<td>2020</td>
<td>158.49</td>
<td>244.76</td>
</tr>
<tr>
<td>2021</td>
<td>168.39</td>
<td>260.56</td>
</tr>
<tr>
<td>2022</td>
<td>178.29</td>
<td>276.37</td>
</tr>
<tr>
<td>2023</td>
<td>188.19</td>
<td>292.18</td>
</tr>
<tr>
<td>2024</td>
<td>198.09</td>
<td>308.00</td>
</tr>
</tbody>
</table>

Analysis by FutureMetrics
A few of the many inputs to the model follow.
The first metric we will look at is Return on Investment (ROI)

This is the full capital cost including contingencies, working capital needs, etc, compared to the future net operating cash flows. The ROI is the internal rate of return (IRR) from these cash flows over 10 years.

The mean of the simulated returns is 12.296%

The project has a 25.0% probability of returning an ROI of less than 8%.

And notice the long tail to the left!
Diesel is the primary forcing factor for wood prices. These are from the time series array that varies with each iteration of the Monte Carlo simulation,
ROI (Baseline) vs Sale Price of Pellets per Ton FOB (Baseline)

Output vs Key Input Scenarios

- X Mean: $1
- X Std Dev: $7
- Y Mean: 12
- Y Std Dev: 7.0
- Corr. (Pearson): 0.5
- Corr. (Rank): 0.5
The net equity cash out is the value of the accumulated excess cash flows in year ten net of the equity investment (40% of CAPEX).

In year ten the mean value is $79.3 million. There is a nearly a 0% chance it will be zero dollars or less.
cash at the end of Year 1 to cash at the end of Year 10

Baseline

Values in Millions ($)

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

95%

75%

25%

5%

Cash at the end of Year 1
Cash at the end of Year 2
Cash at the end of Year 3
Cash at the end of Year 4
Cash at the end of Year 5
Cash at the end of Year 6
Cash at the end of Year 7
Cash at the end of Year 8
Cash at the end of Year 9
Cash at the end of Year 10
Let’s simulate the Tilbury Effect with a discrete probability distribution.

In this case, there is a 5% chance any given year that production will be 40% of the normal output. In those years, prices will be 80% of normal.
Two simulations: Blue line is with the potential for the “Tilbury” effect.

ROI (All Simulations)

ROI (Baseline)
Minimum -31
Maximum 33
Mean 12
Std Dev 7.0

ROI (Disruption)
Minimum -91
Maximum 33
Mean 7.9
Std Dev 15

Mean = 12.296%
Mean = 7.93%
Note that the probability of poor IRR increases from 29% to 40% with the simulated “Tilbury Effect”
In this simulation the Tilbury disruption is still in place however now the project has an offtake agreement that links the price paid for pellets to the cost of wood. The pricing link is modeled after a real pellet export project in Georgia that uses a diesel pricing adjuster and fiber cost escalator. Note that the “risk” or standard deviation of the key metric is lowered by 63% and the probability of a poor outcome is cut from 37% to 6%.
What would the minimum to insure against the loss without the offtake pricing contract?

<table>
<thead>
<tr>
<th>@RISK Output Results</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
<th>1 Percentile</th>
<th>Conditional Loss @ 1%</th>
<th>Max Loss @ 0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Operating Cash Flows / Year 1</td>
<td>($8,883,319)</td>
<td>$2,514,061</td>
<td>$7,296,538</td>
<td>($4,205,495)</td>
<td>($42,055)</td>
<td>($44,417)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 2</td>
<td>($10,408,470)</td>
<td>$6,039,077</td>
<td>$13,743,060</td>
<td>($9,521,915)</td>
<td>($95,219)</td>
<td>($52,042)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 3</td>
<td>($9,079,773)</td>
<td>$7,193,847</td>
<td>$16,652,870</td>
<td>($7,659,356)</td>
<td>($76,594)</td>
<td>($45,399)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 4</td>
<td>($8,999,861)</td>
<td>$8,527,611</td>
<td>$20,672,080</td>
<td>($7,462,313)</td>
<td>($74,623)</td>
<td>($44,999)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 5</td>
<td>($9,291,595)</td>
<td>$10,039,350</td>
<td>$25,476,680</td>
<td>($7,156,102)</td>
<td>($71,561)</td>
<td>($46,458)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 6</td>
<td>($10,416,580)</td>
<td>$11,717,080</td>
<td>$31,144,630</td>
<td>($6,754,933)</td>
<td>($67,549)</td>
<td>($52,083)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 7</td>
<td>($10,281,890)</td>
<td>$13,628,480</td>
<td>$37,253,310</td>
<td>($6,410,493)</td>
<td>($64,105)</td>
<td>($51,409)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 8</td>
<td>($9,855,405)</td>
<td>$15,744,070</td>
<td>$43,292,900</td>
<td>($5,950,661)</td>
<td>($59,507)</td>
<td>($49,277)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 9</td>
<td>($9,715,582)</td>
<td>$18,018,130</td>
<td>$51,488,910</td>
<td>($5,611,576)</td>
<td>($56,116)</td>
<td>($48,578)</td>
</tr>
<tr>
<td>Net Operating Cash Flows / Year 10</td>
<td>($9,929,715)</td>
<td>$21,618,630</td>
<td>$61,848,370</td>
<td>($3,219,717)</td>
<td>($32,197)</td>
<td>($49,649)</td>
</tr>
</tbody>
</table>

Average ==> $11,504,034

($639,526) ($484,311)
FutureMetrics

We provide expert modeling for developers of pellet export projects. (we also do project analysis for domestic production)

Maximize the likelihood of success

Minimize the risk of ruin

Globally Respected Consultants in BioEnergy

www.FutureMetrics.com