A Look at the Details of CO₂ Emissions from burning Wood vs. Coal

By William Strauss and Laurenz Schmidt¹, FutureMetrics, January, 2012

FutureMetrics has published several papers regarding the efficacy of the Manomet Study² vis-à-vis the methodology for modeling the carbon cycle. Our previous critiques were centered on the assumptions regarding carbon debt and the timing of the carbon recapture by growing sustainably managed forests.

In one of our papers we accept the premise at the foundation of the Manomet work; that the combustion of wood releases more CO_2 than the combustion of coal by 34.6%³. We decided to look at that assumption more closely. What we have found is very interesting and proves us wrong for assuming that the Manomet data was correct.

Table 1 below shows the CO_2 emissions per million BTU for a variety of wood species and Table 2 shows the data for four grades of coal. Although wood species densities vary quite a lot, the output of CO_2 per million BTU (MMBTU) is quite consistent. Coal started its life a long time ago as biomass. And, it turns out, on a dry basis, coal and wood yield very similar results in terms of the CO_2 produced (in terms of kilograms of CO_2 per unit of potential energy).

The results of our analysis shows that wood is generally about the same or perhaps a bit lower in CO_2 emissions on a dry basis (zero moisture content).

Of course wood does not have zero moisture content (MC). But as it turns out neither does coal.

The typical moisture content of coal is:

- Anthracite Coal : 2.8% 16.3% by weight
- Bituminous Coal : 2.2% 15.9% by weight
- Lignite Coal : 39% or more by weight

It is the water in fuel that causes its CO_2 emissions to increase over the dry weight basis. The underlying cause that drives this is "the enthalpy of vaporization". In simple terms, it takes energy to evaporate the water in the wood or coal and convert it to vapor (steam). All of that energy is typically sent out the chimney and into the atmosphere in the form of water vapor, unless a condensing boiler is used which may claim part of the escaping energy. So to get a million BTUs of useful energy from the fuel, a larger mass of wood or coal is necessary to compensate for the losses from vaporizing all that water. More wood or coal per unit of energy means more CO_2 per unit of energy.

With coal, the higher water content grades also have lower carbon content and higher content of volatiles. The net effect of this is that on average CO₂ outputs are relatively consistent across grades (see Table 2).

Table 3 below shows the CO_2 production for wood from zero to 50% MC. The Manomet study used 45% (page 103).

¹ The peer review of our work by Daniel Parrent, Biomass and Forest Stewardship Coordinator, USDA Forest Service, Anchorage AK was invaluable.

² <u>http://www.manomet.org/sites/manomet.org/files/Manomet_Biomass_Report_Full_LoRez.pdf</u>. FutureMetrics' papers are at <u>www.FutureMetrics.com</u>

³ Based on data in the table in appendix 2-A on page 129 of the study.

At 45% MC the combustion of wood yields about 9.0% more CO_2 per unit of useful energy than an average of the coal grades' outputs⁴. While still more than coal, this is significantly less than the 34.6% difference that drives the Manomet "debt-then-dividend" model. Even if we were to accept this model, this would suggest that the debts generated in their models should be paid off much sooner than the study shows.

This also illustrates how each location will have different outcomes. Coal grades, wood species, moisture contents of both coal and wood, and boiler efficiency will yield unique metrics.

While we stand behind our logic in all of our previous papers on the carbon neutrality of wood combustion (with the sustainability constraint as the essential foundation of that logic), we also have shown here that dried wood at MC's below 20% have the same or less CO_2 emission per MMBTU as most coal. Wood pellets at under 10% MC result in less CO_2 emission than any coal under otherwise equal circumstances.

Interestingly, it would appear that if a conventional low efficiency biomass power plant were to use what is otherwise waste heat from the condenser cooling loop to pre-dry the fuel as part of the fuel processing it would lower the net CO₂ output per unit of useful energy produced. The same technology may also apply to pre-treat lower grade (wetter) coal.

In conclusion, wood in a low moisture content state has lower instantaneous CO_2 emissions per unit of energy produced than coal. But of course formation of new coal to recycle the carbon released from any coal combustion takes eons. As we have clearly shown in our previous papers on this subject, with sustainable working forest management, the recycling of carbon from wood combustion is virtually instantaneous and continuous and therefore the net stock of CO_2 in the atmosphere from the combustion of wood is not increased.

⁴ This assumes that both the coal plant and the biomass power plant have the same boiler efficiency. This may not be true for older stoker biomass power plants but is true for modern fluidized bed systems.

Table 1											
Species	Density	Weight Per Cord	BTU's Per Cord (at 20% MC - air dryed)	BTU's per Cord (at 45% MC)	Units needed to produce 1 Million BTU's	Higher HV	Lower HV (NHV)	Units (kg)	C content (average)		CO ₂ output (LHV)
	(lbs per ft ³)	(lbs)	(millions)	(millions)		MMBTUs/ton	MMBTUs/ton	1/MMBTU	Hardwood 47-50%	Softwood 50 -53%	(kg/MMBTU)
Hickory	50.9	4327	27.7	19.39	0.052	16.69	15.29	65.38	48.50%		116.27
East. Hophornbeam	50.2	4267	27.3	19.11	0.052	16.68	15.29	65.42	48.50%		116.34
Apple	48.7	4100	26.5	18.55	0.054	16.85	15.44	64.76	48.50%		115.16
White Oak	47.2	4012	25.7	17.99	0.056	16.70	15.30	65.34	48.50%		116.20
Sugar Maple	44.2	3757	24	16.8	0.06	16.65	15.26	65.52	48.50%		116.52
Red Oak	44.2	3757	24	16.8	0.06	16.65	15.26	65.52	48.50%		116.52
Beech	44.2	3757	24	16.8	0.06	16.65	15.26	65.52	48.50%		116.52
Yellow Birch	43.4	3689	23.6	16.52	0.061	16.68	15.28	65.43	48.50%		116.35
White Ash	43.4	3689	23.6	16.52	0.061	16.68	15.28	65.43	48.50%		116.35
Hackberry	38.2	3247	20.8	14.56	0.069	16.70	15.30	65.34	48.50%		116.19
Tamarack	38.2	3247	20.8	14.56	0.069	16.70	15.30	65.34	48.50%		116.19
Paper Birch	37.4	3179	20.3	14.21	0.07	16.64	15.26	65.55	48.50%		116.56
Cherry	36.7	3121	20	14	0.071	16.70	15.31	65.31	48.50%		116.15
Elm	35.9	3052	19.5	13.65	0.073	16.65	15.27	65.51	48.50%		116.50
Black Ash	35.2	2992	19.1	13.37	0.075	16.64	15.25	65.57	48.50%		116.60
Red Maple	34.4	2924	18.7	13.09	0.076	16.67	15.28	65.45	48.50%		116.39
Boxelder	32.9	2797	17.9	12.53	0.08	16.68	15.29	65.40	48.50%		116.31
Jack Pine	31.4	2669	17.1	11.97	0.084	16.70	15.31	65.33	10.5070	51.50%	123.36
Norway Pine	31.4	2669	17.1	11.97	0.084	16.70	15.31	65.33		51.50%	123.36
Hemlock	29.2	2482	15.9	11.13	0.09	16.70	15.31	65.34		51.50%	123.38
Black Spruce	29.2	2482	15.9	11.13	0.09	16.70	15.31	65.34		51.50%	123.38
Ponderosa Pine	28	2380	15.2	10.64	0.094	16.65	15.26	65.54		51.50%	123.75
Aspen	20	2290	14.7	10.29	0.097	16.73	15.34	65.20		51.50%	123.12
White Pine	26.3	2236	14.3	10.27	0.1	16.67	15.28	65.45		51.50%	123.58
Balsam Fir	26.3	2236	14.3	10.01	0.1	16.67	15.28	65.45		51.50%	123.58
Cottonwood	24.8	2108	13.5	9.45	0.106	16.69	15.28	65.36		51.50%	123.38
Basswood	24.8	2108	13.5	9.45	0.108						-
Dasswoou	24.0	2100	13.5	9.40	0.100	16.69	15.30	65.36	L	51.50%	123.41

Table 2		Coal		HHV	LHV	kg	C conte	nt range	CO ₂ output
		G	Grade	MMBTUs/ton	MMBTUs/ton	1/MMBTU	low	high	(kg/MMBTU)
		Anthra	racite	29.74	29.01	34.47	0.92	0.98	120.07
		Bitumi	ninous	25.88	24.77	40.38	0.65	0.92	115.48
		Sub-Bi	Bituminous	20.93	19.48	51.33	0.45	0.65	122.33
		Lignite	e	13.55	11.69	85.56	0.25	0.45	125.49

	Table 3														
С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R
											Efficiency including		DME (kg) of MCx	Corresponding	CO2
	ratio MCx wood	DME (dry mass eq.)	GHV	wood	water	carbon	water to evap.	energy lost	energy lost	NHV	losses from the	Usable net HV	wood per MMBtu	C content	generation
MCx	to MC0 wood	(kg MCx/kgMC0)	(MJ/kg)	(kg/tonne)	(kg/tonne)	(kg/tonne)	(kg/DME)	(MJ/DME)	(MMBtu/DME)	(MI/kg)	enthalpy of vaporization (%)	(MMBtu/DME)	of Usable HV	(kg/MMBtu LIHV)	(kg/MMBtu HHV)
0	1.000	1000.000	19.80	1000			-								
5	1.053	1052.632	19.80	950	-										
8	1.087	1086.957	18.22	920								15.67			
10	1.111	1111.111	17.82	900											
15	1.176	1176.471	16.83	850				-	1						-
20	1.250	1250.000	15.84	800	200	400	250.00	564.3	0.535	12.83	81.0	15.20	82.22	32.89	120.58
25	1.333	1333.333	14.85	750	250	375	333.33	752.3	0.713	11.88	80.0	15.02	. 88.79	33.30) 122.09
30	1.429	1428.571	13.86	700	300	350	428.57	967.3	0.917	10.95	79.0	14.83	96.34	33.72	123.63
35	1.538	1538.462	12.87	650	350	325	538.46	1215.3	1.152	10.04	78.0	14.64	105.08	34.15	125.22
40	1.667	1666.667	11.88	600	400	300	666.67	1504.7	1.426	9.15	77.0	14.45	115.31	. 34.59	126.85
45	1.818	1818.182	10.89	550	450	275	818.18	1846.6	1.751	8.11	74.5	13.98	130.02	35.76	5 131.10
50	2.000	2000.000	9.90	500	500	250	1000.00	2257.0	2.140	7.13	72.0	13.51	. 147.99	37.00	135.65
Col C	MC is moisture content, wet basis. X corresponds to the stated MC														
Col D	ratio MCX wood	<mark>to MC0 wood</mark> is the	e ratio of the	mass of we	t material	at MCx red	quired to get 1	Lunit wood a	t MC0						
Col E		<mark>equivalent)</mark> is the m		,	•	,	•								
Col F		the Gross Heating V				•	/) * (1-MC/100	0)							
Col G		e) is the mass of bor	•			MCx									
Col H		e) is the mass of war													
Col I		ne) is the mass of ca					=50% by wt.								
Col J		rate (kg/DME) is the			•		1.00571.1/1								
Col K		/DME) is the heat lo						•	0						
Col L		MBtu/DME) is the he		•			e wood; (MJ *	948/100000	0 = MMBtu)						
Col M		s equal to the Gross				•									
Col N Col O		efficiency (%) acco			ie neat of	vaporizati	on								
Col P		t value (HV) = NHV * x wood per MMBtu	-		a LIV										
Col Q		C content = (value fi		-		LI) / 1000									
Col R		= value from Col Q				JII) / 1000									
CULK	CO2 generation	- value from COLQ	44/12												

Sources for underlying data:

http://www.engineeringtoolbox.com/wood-combustion-heat-d_372.html http://www.hearth.com/econtent/index.php/articles/heating_value_wood http://extension.missouri.edu/explorepdf/agguides/forestry/g05450.pdf http://www.fpl.fs.fed.us/documnts/techline/fuel-value-calculator.pdf

FutureMetrics – Globally respected consultants in bioenergy, 8 Airport Road, Bethel, ME 04217, 207.824.7428, WilliamStrauss@FutureMetrics.com